Machine Learning and Statistical MAP Methods
نویسندگان
چکیده
For machine learning of an input-output function f from examples, we show it is possible to define an a priori probability density function on the hypothesis space to represent knowledge of the probability distribution of f , even when the hypothesis space H is large (i.e., nonparametric). This allows extension of maximum a posteriori (MAP) estimation methods nonparametric function estimation. Among other things, the resulting MAPN (MAP for nonparametric machine learning) procedure easily reproduces spline and radial basis function solutions of
منابع مشابه
Statistical Likelihood Representations of Prior Knowledge in Machine Learning
We show that maximum a posteriori (MAP) statistical methods can be used in nonparametric machine learning problems in the same way as their current applications in parametric statistical problems, and give some examples of applications. This MAPN (MAP for nonparametric machine learning) paradigm can also reproduce much more transparently the same results as regularization methods in machine lea...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملAdvanced machine learning methods for wind erosion monitoring in southern Iran
Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005